Correlations in Prompt Neutrons and Gamma Rays from Fission

```
S. A. Pozzi<sup>1</sup>, B. Wieger<sup>1</sup>, M. J. Marcath<sup>1</sup>, S. Ward<sup>1</sup>, J. L. Dolan<sup>1</sup>, T. H. Shin<sup>1</sup>, S. D. Clarke<sup>1</sup>, M. Flaska<sup>1</sup>, E. W. Larsen<sup>1</sup>, A. Enqvist<sup>2</sup>, R. Vogt<sup>3,4</sup>, J. Randrup<sup>5</sup>,
```

R. C. Haight⁶, P. Talou⁶, T. Kawano⁶, I. Stetcu⁶, E. Padovani⁷

¹Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI, USA

²University of Florida, Gainsville, FL, USA

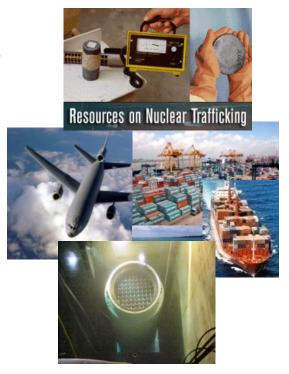
³Lawrence Livermore National Laboratory, Livermore, CA, USA

^⁴University of California, Davis, CA, USA

⁵Lawrence Berkeley National Laboratory, Berkeley, CA, USA

⁶Los Alamos National Laboratory, Los Alamos, NM, USA

⁷Department of Energy, Polytechnic of Milan, Milan, Italy

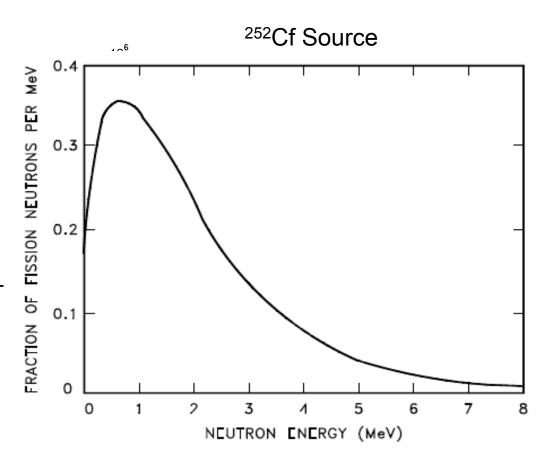


Motivation

- Nuclear nonproliferation and safeguards applications require improved models for physics of nuclear fission and detector response.
- Specifically, the correlated neutron and gamma ray emission properties of important nuclear isotopes such as ²³⁵U and ²³⁹Pu are not well known. These data are important in nuclear safeguards and nonproliferation.
- A past DOE NEUP project has led to a successful measurement campaign at LANSCE (2010) for the measurement of the ²³⁵U fission neutron spectrum (without information on angular distribution or multiplicity).
- The present work builds on that experience and includes correlated information.

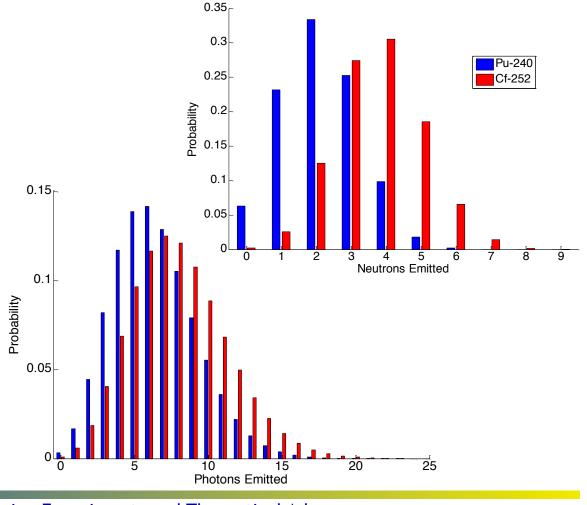
The MCNPX-PoliMi Code System

- MCNP-PoliMi was developed to simulate correlation measurements with neutrons and gamma rays
 - Physics of particle transport (MCNPX-PoliMi code)
 - □ Built-in correlated sources (252Cf, 240Pu etc.)
 - Multiplicity-dependent energy distribution
 - □ Light fission fragment direction-dependent neutron flight direction
 - Energy is conserved in each individual collision
 - Prompt neutrons and gamma rays associated with each event are modeled explicitly
 - Improved simulation of correlation and multiplicity distributions
 - 2. Physics of detection (MCNPX-PoliMi Post-Processor, MPPost)
 - MPPost treats each collision in the detector individually
 - Transport must be completely analog
 - Improved simulation of detector response



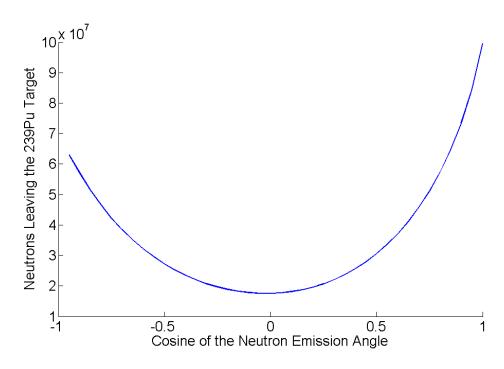
Spontaneous Fission Sources Energy Distributions

- The energy distributions of spontaneous-fission neutrons and gamma rays are independently sampled
- The data contained in MCNPX-PoliMi are based on results from the literatures. Lemaire, P. Talou, T. Kawano, M.B. Chadwick and D. G. Madland. Monte-Carlo approach to sequential neutron emission from fission fragments. Phys. Rev. C 72, 024601 (2005)



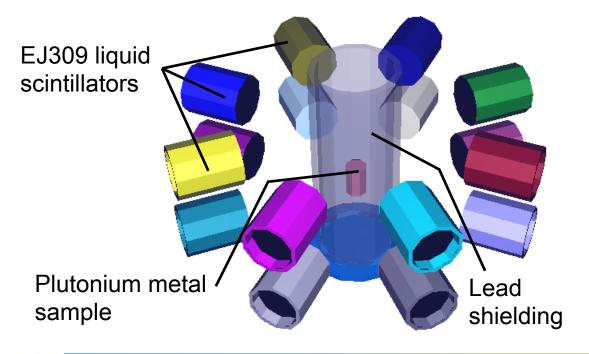
Spontaneous Fission Sources Multiplicity Distributions

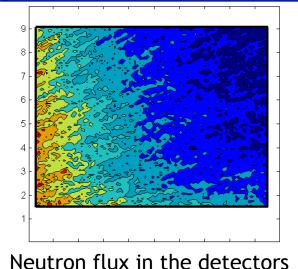
- MCNPX-PoliMi contains complete neutron and gamma-ray multiplicity distributions for each source
- The number of neutrons and gamma rays from each fission event is independently sampled from these distributions

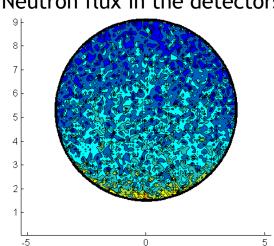


Spontaneous Fission Sources *Angular Distributions*

- Anisotropic angular emission of neutrons is available, and recommended for each spontaneous fission source*
- The direction of each particle is sampled independently from any other parameters
- A completely isotropic distribution is available for debugging purposes

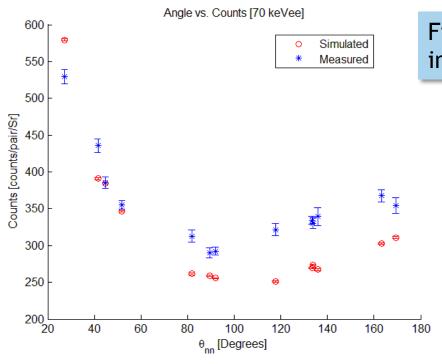

*T. Valentine, "MCNP-DSP Users Manual," ORNL/TM-13334,R2 (2001).

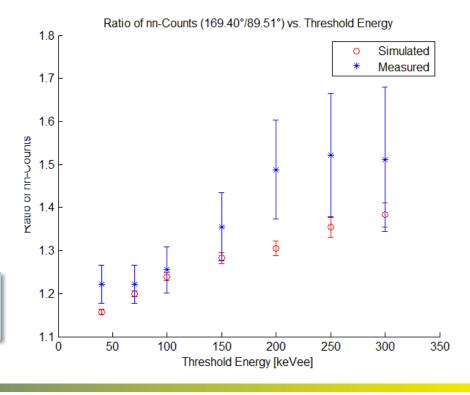




Spontaneous Fission Measurements Pu Metal Samples at JRC, Ispra

- A prototype fast-neutron multiplicity counter was tested at JRC, Ispra in 2013
- 1.63 g of ²⁴⁰Pu_{eff} was measured with 1-cm of lead shielding and a 70 keVee threshold

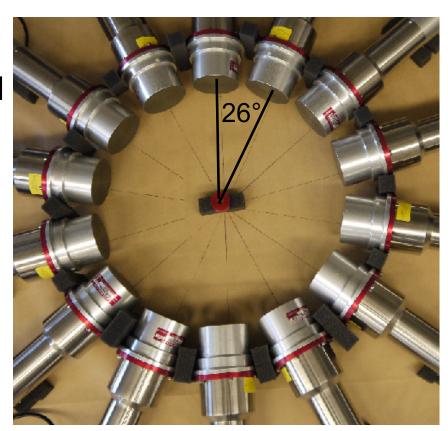


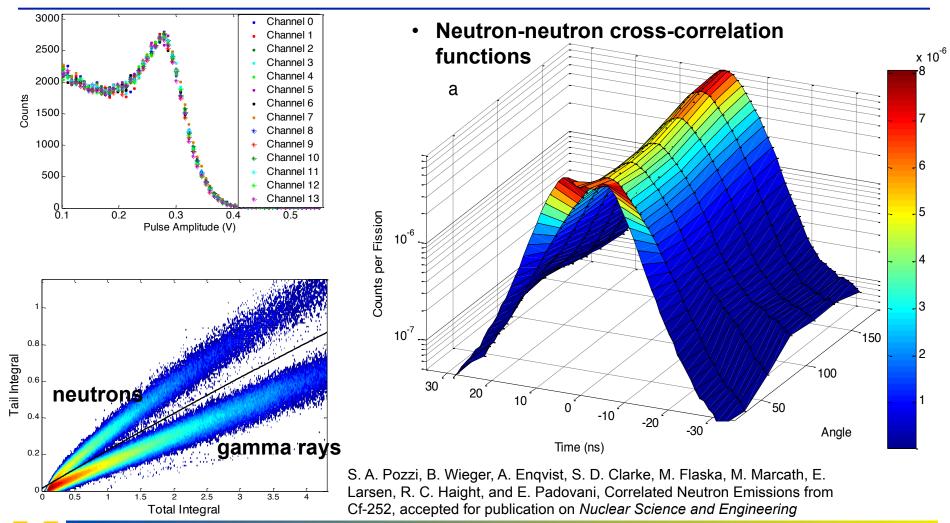


Pu Measurements at JRC-Ispra Comparison of Results

Increasing the detection threshold increases the observed anisotropy

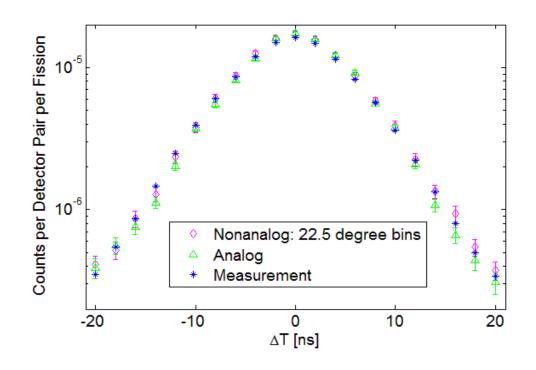
Fission-source anisotropy is clearly visible in the simulation and the measurement




Spontaneous Fission Measurements ²⁵²Cf at University of Michigan

- 14 3x2 inch EJ309 liquid scintillation detectors at a distance of 20 cm, separated by ~26° with a detection threshold of 40 keVee
- A 47 μCi (54000 fissions/sec)
 ²⁵²Cf source was used
- 2 CAEN V1720 12-bit, 250-MHz waveform digitizers

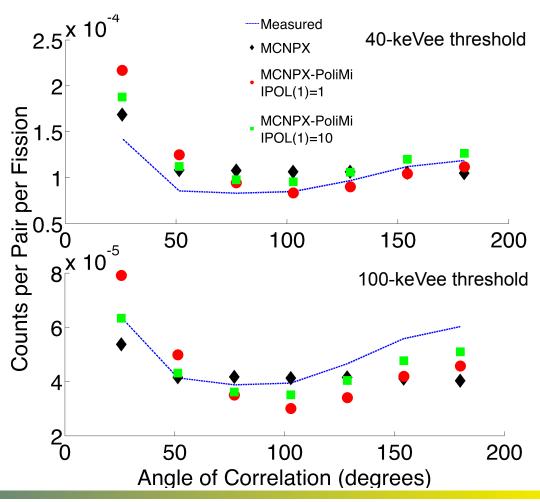
²⁵²Cf Measurements at UM *Results*



²⁵²Cf Measurements at UM Neutron-neutron Correlations at 180 deg.

- Very good agreement between measurement and simulation.
- Non-analog treatment improves simulation efficiency.

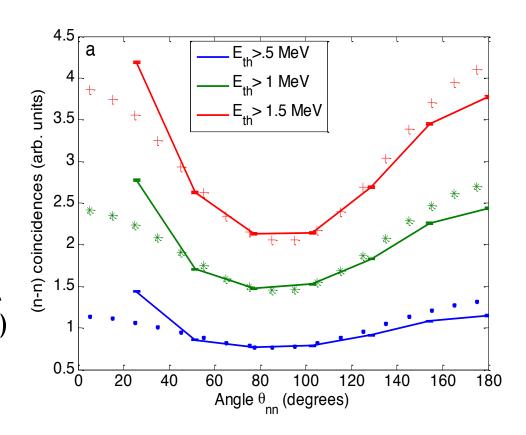
M. J. Marcath, S. D. Clarke, B. M. Weiger, E. W. Larsen, S. A. Pozzi, "An Implicit Correlation Method for Cross-Correlation Sampling, with MCNPX-PoliMi Validation," *Nuclear Science and Engineering*, submitted July 2014.



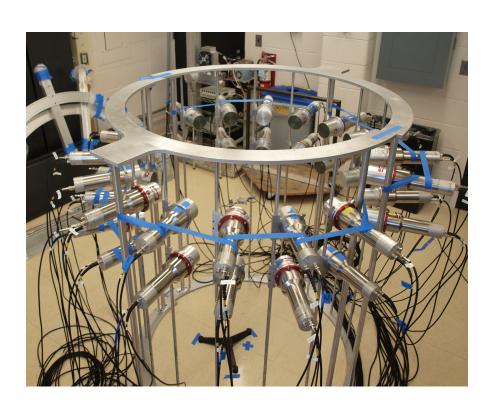
²⁵²Cf Measurements at UM Number-angle Correlations

 All MCNPX-PoliMi treatments more physical than the standard MCNPX treatment

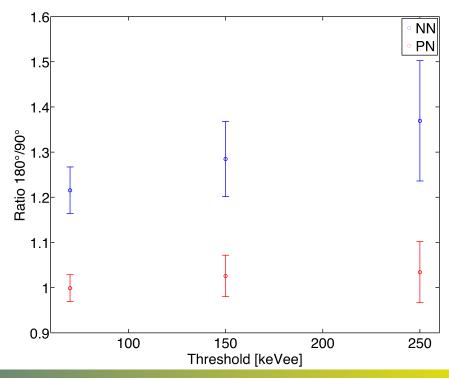
IPOL(1)	Energy Distribution	
1	Neutron multiplicity- dependent spectrum	
10	Watt spectrum	



²⁵²Cf Measurements at UM Comparison with Theory


- Measured this work (solid line) neutron-neutron correlated counts as a function of angle between detectors
- Compared to theory results from LLNL/LBNL using FREYA (symbols) (Vogt and Randrup)

Neutron-Gamma-ray Correlations Scintillator Array at University of Michigan



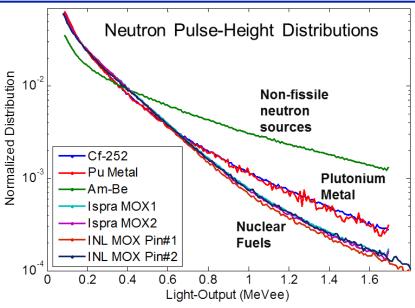
Neutron-Gamma-ray Correlations *Results*

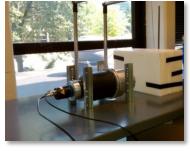
- Neutron-neutron correlations show an increasing trend with detection threhold
- Photon-neutron correlations show no trend with detection threshold
- Approximately 3 hrs of data have been processed

Detectors	7.62x7 EJ:	:J309 x7.62cm :J309 x7.62cm	
Detector angle [degrees]	97	141	
n-n [cts/pair]	1472	1789	
n-γ [cts/pair]	3374	3316	
γ-n [cts/pair]	3407	3404	
γ-γ[cts/pair]	8666	8177	

Summary and Conclusions

- New measurements of correlated, prompt emissions from ²⁵²Cf and ²⁴⁰Pu have been performed
 - Neutron-neutron, neutron-gamma ray correlations
 - Experimental results used to validate codes: MCNPX-PoliMi treatments are more physical than the standard MCNPX treatment
- New fission models have been implemented in MCNPX PoliMi
 - Anisotropic neutron emission from fission
 - Multiplicity-dependent neutron energy spectra
- Further development is underway to develop a comprehensive model that is more physical
 - MCNPX-PoliMi Short Course at IEEE-NSS on November 9

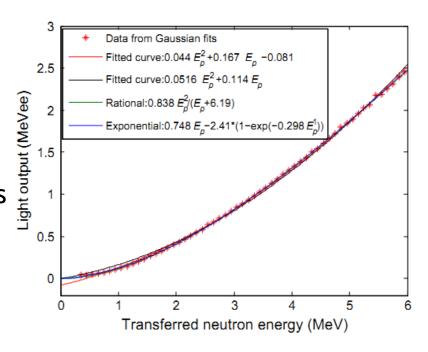

Extra slides



Detecting SNM Signatures Organic Scintillation Detectors

- Organic scintillators have several advantages for detecting SNM signatures
 - Nanosecond-scale response times
 - Response is proportional to the energy deposited
 - Good intrinsic efficiency
 - Pulse shape discrimination
 - Good scalability and low cost
- Light is produced as incident particles interact with the scintillation material
 - Compton scattering on electrons
 - Elastic scattering on hydrogen and carbon

* Measurements performed by Jennifer Dolan at INL(2009) and ISPRA (2010)



Detector Response Simulation Organic Scintillation Detectors

- The energy deposited by a particle, T, must be calculated for each individual collision
- The energy deposited in each collision is converted into light output, L, using measured relationships
- Energy deposition to light conversion is a nonlinear process for neutrons and must take place individually for all collisions
 - Order of collision matters: carbonhydrogen or hydrogen-carbon
- A light pulses is a sum of several light flashes produced within a pulse generation time

A. Enqvist, C. C. Lawrence, B. M. Wieger, S. A. Pozzi, T. N. Massey. *Neutron Light Output Response and Resolution Functions in EJ-309 Liquid Scintillation Detectors*, Nucl. Instr. Meth. A 715, 79 (2013).